3.20.26 \(\int \frac {(1-2 x)^{3/2}}{(2+3 x)^3 (3+5 x)^3} \, dx\) [1926]

3.20.26.1 Optimal result
3.20.26.2 Mathematica [A] (verified)
3.20.26.3 Rubi [A] (verified)
3.20.26.4 Maple [A] (verified)
3.20.26.5 Fricas [A] (verification not implemented)
3.20.26.6 Sympy [A] (verification not implemented)
3.20.26.7 Maxima [A] (verification not implemented)
3.20.26.8 Giac [A] (verification not implemented)
3.20.26.9 Mupad [B] (verification not implemented)

3.20.26.1 Optimal result

Integrand size = 24, antiderivative size = 147 \[ \int \frac {(1-2 x)^{3/2}}{(2+3 x)^3 (3+5 x)^3} \, dx=-\frac {1015 \sqrt {1-2 x}}{6 (3+5 x)^2}+\frac {7 \sqrt {1-2 x}}{6 (2+3 x)^2 (3+5 x)^2}+\frac {45 \sqrt {1-2 x}}{2 (2+3 x) (3+5 x)^2}+\frac {1020 \sqrt {1-2 x}}{3+5 x}+14073 \sqrt {\frac {3}{7}} \text {arctanh}\left (\sqrt {\frac {3}{7}} \sqrt {1-2 x}\right )-13665 \sqrt {\frac {5}{11}} \text {arctanh}\left (\sqrt {\frac {5}{11}} \sqrt {1-2 x}\right ) \]

output
14073/7*arctanh(1/7*21^(1/2)*(1-2*x)^(1/2))*21^(1/2)-13665/11*arctanh(1/11 
*55^(1/2)*(1-2*x)^(1/2))*55^(1/2)-1015/6*(1-2*x)^(1/2)/(3+5*x)^2+7/6*(1-2* 
x)^(1/2)/(2+3*x)^2/(3+5*x)^2+45/2*(1-2*x)^(1/2)/(2+3*x)/(3+5*x)^2+1020*(1- 
2*x)^(1/2)/(3+5*x)
 
3.20.26.2 Mathematica [A] (verified)

Time = 0.31 (sec) , antiderivative size = 95, normalized size of antiderivative = 0.65 \[ \int \frac {(1-2 x)^{3/2}}{(2+3 x)^3 (3+5 x)^3} \, dx=\frac {\sqrt {1-2 x} \left (23219+110315 x+174435 x^2+91800 x^3\right )}{2 \left (6+19 x+15 x^2\right )^2}+14073 \sqrt {\frac {3}{7}} \text {arctanh}\left (\sqrt {\frac {3}{7}} \sqrt {1-2 x}\right )-13665 \sqrt {\frac {5}{11}} \text {arctanh}\left (\sqrt {\frac {5}{11}} \sqrt {1-2 x}\right ) \]

input
Integrate[(1 - 2*x)^(3/2)/((2 + 3*x)^3*(3 + 5*x)^3),x]
 
output
(Sqrt[1 - 2*x]*(23219 + 110315*x + 174435*x^2 + 91800*x^3))/(2*(6 + 19*x + 
 15*x^2)^2) + 14073*Sqrt[3/7]*ArcTanh[Sqrt[3/7]*Sqrt[1 - 2*x]] - 13665*Sqr 
t[5/11]*ArcTanh[Sqrt[5/11]*Sqrt[1 - 2*x]]
 
3.20.26.3 Rubi [A] (verified)

Time = 0.24 (sec) , antiderivative size = 151, normalized size of antiderivative = 1.03, number of steps used = 11, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.417, Rules used = {109, 168, 27, 168, 27, 168, 27, 174, 73, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(1-2 x)^{3/2}}{(3 x+2)^3 (5 x+3)^3} \, dx\)

\(\Big \downarrow \) 109

\(\displaystyle \frac {1}{6} \int \frac {157-237 x}{\sqrt {1-2 x} (3 x+2)^2 (5 x+3)^3}dx+\frac {7 \sqrt {1-2 x}}{6 (3 x+2)^2 (5 x+3)^2}\)

\(\Big \downarrow \) 168

\(\displaystyle \frac {1}{6} \left (\frac {1}{7} \int \frac {7 (2441-3375 x)}{\sqrt {1-2 x} (3 x+2) (5 x+3)^3}dx+\frac {135 \sqrt {1-2 x}}{(3 x+2) (5 x+3)^2}\right )+\frac {7 \sqrt {1-2 x}}{6 (3 x+2)^2 (5 x+3)^2}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{6} \left (\int \frac {2441-3375 x}{\sqrt {1-2 x} (3 x+2) (5 x+3)^3}dx+\frac {135 \sqrt {1-2 x}}{(3 x+2) (5 x+3)^2}\right )+\frac {7 \sqrt {1-2 x}}{6 (3 x+2)^2 (5 x+3)^2}\)

\(\Big \downarrow \) 168

\(\displaystyle \frac {1}{6} \left (-\frac {1}{22} \int \frac {198 (887-1015 x)}{\sqrt {1-2 x} (3 x+2) (5 x+3)^2}dx-\frac {1015 \sqrt {1-2 x}}{(5 x+3)^2}+\frac {135 \sqrt {1-2 x}}{(3 x+2) (5 x+3)^2}\right )+\frac {7 \sqrt {1-2 x}}{6 (3 x+2)^2 (5 x+3)^2}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{6} \left (-9 \int \frac {887-1015 x}{\sqrt {1-2 x} (3 x+2) (5 x+3)^2}dx-\frac {1015 \sqrt {1-2 x}}{(5 x+3)^2}+\frac {135 \sqrt {1-2 x}}{(3 x+2) (5 x+3)^2}\right )+\frac {7 \sqrt {1-2 x}}{6 (3 x+2)^2 (5 x+3)^2}\)

\(\Big \downarrow \) 168

\(\displaystyle \frac {1}{6} \left (-9 \left (-\frac {1}{11} \int \frac {11 (3331-2040 x)}{\sqrt {1-2 x} (3 x+2) (5 x+3)}dx-\frac {680 \sqrt {1-2 x}}{5 x+3}\right )-\frac {1015 \sqrt {1-2 x}}{(5 x+3)^2}+\frac {135 \sqrt {1-2 x}}{(3 x+2) (5 x+3)^2}\right )+\frac {7 \sqrt {1-2 x}}{6 (3 x+2)^2 (5 x+3)^2}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{6} \left (-9 \left (-\int \frac {3331-2040 x}{\sqrt {1-2 x} (3 x+2) (5 x+3)}dx-\frac {680 \sqrt {1-2 x}}{5 x+3}\right )-\frac {1015 \sqrt {1-2 x}}{(5 x+3)^2}+\frac {135 \sqrt {1-2 x}}{(3 x+2) (5 x+3)^2}\right )+\frac {7 \sqrt {1-2 x}}{6 (3 x+2)^2 (5 x+3)^2}\)

\(\Big \downarrow \) 174

\(\displaystyle \frac {1}{6} \left (-9 \left (14073 \int \frac {1}{\sqrt {1-2 x} (3 x+2)}dx-22775 \int \frac {1}{\sqrt {1-2 x} (5 x+3)}dx-\frac {680 \sqrt {1-2 x}}{5 x+3}\right )-\frac {1015 \sqrt {1-2 x}}{(5 x+3)^2}+\frac {135 \sqrt {1-2 x}}{(3 x+2) (5 x+3)^2}\right )+\frac {7 \sqrt {1-2 x}}{6 (3 x+2)^2 (5 x+3)^2}\)

\(\Big \downarrow \) 73

\(\displaystyle \frac {1}{6} \left (-9 \left (22775 \int \frac {1}{\frac {11}{2}-\frac {5}{2} (1-2 x)}d\sqrt {1-2 x}-14073 \int \frac {1}{\frac {7}{2}-\frac {3}{2} (1-2 x)}d\sqrt {1-2 x}-\frac {680 \sqrt {1-2 x}}{5 x+3}\right )-\frac {1015 \sqrt {1-2 x}}{(5 x+3)^2}+\frac {135 \sqrt {1-2 x}}{(3 x+2) (5 x+3)^2}\right )+\frac {7 \sqrt {1-2 x}}{6 (3 x+2)^2 (5 x+3)^2}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {1}{6} \left (-9 \left (-9382 \sqrt {\frac {3}{7}} \text {arctanh}\left (\sqrt {\frac {3}{7}} \sqrt {1-2 x}\right )+9110 \sqrt {\frac {5}{11}} \text {arctanh}\left (\sqrt {\frac {5}{11}} \sqrt {1-2 x}\right )-\frac {680 \sqrt {1-2 x}}{5 x+3}\right )-\frac {1015 \sqrt {1-2 x}}{(5 x+3)^2}+\frac {135 \sqrt {1-2 x}}{(3 x+2) (5 x+3)^2}\right )+\frac {7 \sqrt {1-2 x}}{6 (3 x+2)^2 (5 x+3)^2}\)

input
Int[(1 - 2*x)^(3/2)/((2 + 3*x)^3*(3 + 5*x)^3),x]
 
output
(7*Sqrt[1 - 2*x])/(6*(2 + 3*x)^2*(3 + 5*x)^2) + ((-1015*Sqrt[1 - 2*x])/(3 
+ 5*x)^2 + (135*Sqrt[1 - 2*x])/((2 + 3*x)*(3 + 5*x)^2) - 9*((-680*Sqrt[1 - 
 2*x])/(3 + 5*x) - 9382*Sqrt[3/7]*ArcTanh[Sqrt[3/7]*Sqrt[1 - 2*x]] + 9110* 
Sqrt[5/11]*ArcTanh[Sqrt[5/11]*Sqrt[1 - 2*x]]))/6
 

3.20.26.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 73
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[ 
{p = Denominator[m]}, Simp[p/b   Subst[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + 
 d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] && Lt 
Q[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntL 
inearQ[a, b, c, d, m, n, x]
 

rule 109
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_) 
)^(p_), x_] :> Simp[(b*c - a*d)*(a + b*x)^(m + 1)*(c + d*x)^(n - 1)*((e + f 
*x)^(p + 1)/(b*(b*e - a*f)*(m + 1))), x] + Simp[1/(b*(b*e - a*f)*(m + 1)) 
 Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 2)*(e + f*x)^p*Simp[a*d*(d*e*(n - 1) 
+ c*f*(p + 1)) + b*c*(d*e*(m - n + 2) - c*f*(m + p + 2)) + d*(a*d*f*(n + p) 
 + b*(d*e*(m + 1) - c*f*(m + n + p + 1)))*x, x], x], x] /; FreeQ[{a, b, c, 
d, e, f, p}, x] && LtQ[m, -1] && GtQ[n, 1] && (IntegersQ[2*m, 2*n, 2*p] || 
IntegersQ[m, n + p] || IntegersQ[p, m + n])
 

rule 168
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_) 
)^(p_)*((g_.) + (h_.)*(x_)), x_] :> Simp[(b*g - a*h)*(a + b*x)^(m + 1)*(c + 
 d*x)^(n + 1)*((e + f*x)^(p + 1)/((m + 1)*(b*c - a*d)*(b*e - a*f))), x] + S 
imp[1/((m + 1)*(b*c - a*d)*(b*e - a*f))   Int[(a + b*x)^(m + 1)*(c + d*x)^n 
*(e + f*x)^p*Simp[(a*d*f*g - b*(d*e + c*f)*g + b*c*e*h)*(m + 1) - (b*g - a* 
h)*(d*e*(n + 1) + c*f*(p + 1)) - d*f*(b*g - a*h)*(m + n + p + 3)*x, x], x], 
 x] /; FreeQ[{a, b, c, d, e, f, g, h, n, p}, x] && ILtQ[m, -1]
 

rule 174
Int[(((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)))/(((a_.) + (b_.)*(x_))* 
((c_.) + (d_.)*(x_))), x_] :> Simp[(b*g - a*h)/(b*c - a*d)   Int[(e + f*x)^ 
p/(a + b*x), x], x] - Simp[(d*g - c*h)/(b*c - a*d)   Int[(e + f*x)^p/(c + d 
*x), x], x] /; FreeQ[{a, b, c, d, e, f, g, h}, x]
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 
3.20.26.4 Maple [A] (verified)

Time = 3.20 (sec) , antiderivative size = 79, normalized size of antiderivative = 0.54

method result size
risch \(-\frac {\left (-1+2 x \right ) \left (91800 x^{3}+174435 x^{2}+110315 x +23219\right )}{2 \left (15 x^{2}+19 x +6\right )^{2} \sqrt {1-2 x}}+\frac {14073 \,\operatorname {arctanh}\left (\frac {\sqrt {21}\, \sqrt {1-2 x}}{7}\right ) \sqrt {21}}{7}-\frac {13665 \,\operatorname {arctanh}\left (\frac {\sqrt {55}\, \sqrt {1-2 x}}{11}\right ) \sqrt {55}}{11}\) \(79\)
derivativedivides \(\frac {-5075 \left (1-2 x \right )^{\frac {3}{2}}+11055 \sqrt {1-2 x}}{\left (-6-10 x \right )^{2}}-\frac {13665 \,\operatorname {arctanh}\left (\frac {\sqrt {55}\, \sqrt {1-2 x}}{11}\right ) \sqrt {55}}{11}-\frac {324 \left (\frac {205 \left (1-2 x \right )^{\frac {3}{2}}}{36}-\frac {161 \sqrt {1-2 x}}{12}\right )}{\left (-4-6 x \right )^{2}}+\frac {14073 \,\operatorname {arctanh}\left (\frac {\sqrt {21}\, \sqrt {1-2 x}}{7}\right ) \sqrt {21}}{7}\) \(94\)
default \(\frac {-5075 \left (1-2 x \right )^{\frac {3}{2}}+11055 \sqrt {1-2 x}}{\left (-6-10 x \right )^{2}}-\frac {13665 \,\operatorname {arctanh}\left (\frac {\sqrt {55}\, \sqrt {1-2 x}}{11}\right ) \sqrt {55}}{11}-\frac {324 \left (\frac {205 \left (1-2 x \right )^{\frac {3}{2}}}{36}-\frac {161 \sqrt {1-2 x}}{12}\right )}{\left (-4-6 x \right )^{2}}+\frac {14073 \,\operatorname {arctanh}\left (\frac {\sqrt {21}\, \sqrt {1-2 x}}{7}\right ) \sqrt {21}}{7}\) \(94\)
pseudoelliptic \(\frac {309606 \,\operatorname {arctanh}\left (\frac {\sqrt {21}\, \sqrt {1-2 x}}{7}\right ) \left (15 x^{2}+19 x +6\right )^{2} \sqrt {21}-191310 \,\operatorname {arctanh}\left (\frac {\sqrt {55}\, \sqrt {1-2 x}}{11}\right ) \left (15 x^{2}+19 x +6\right )^{2} \sqrt {55}+77 \sqrt {1-2 x}\, \left (91800 x^{3}+174435 x^{2}+110315 x +23219\right )}{154 \left (2+3 x \right )^{2} \left (3+5 x \right )^{2}}\) \(102\)
trager \(\frac {\left (91800 x^{3}+174435 x^{2}+110315 x +23219\right ) \sqrt {1-2 x}}{2 \left (15 x^{2}+19 x +6\right )^{2}}-\frac {15 \operatorname {RootOf}\left (\textit {\_Z}^{2}-45645655\right ) \ln \left (-\frac {5 \operatorname {RootOf}\left (\textit {\_Z}^{2}-45645655\right ) x -8 \operatorname {RootOf}\left (\textit {\_Z}^{2}-45645655\right )-50105 \sqrt {1-2 x}}{3+5 x}\right )}{22}+\frac {14073 \operatorname {RootOf}\left (\textit {\_Z}^{2}-21\right ) \ln \left (\frac {-3 \operatorname {RootOf}\left (\textit {\_Z}^{2}-21\right ) x +21 \sqrt {1-2 x}+5 \operatorname {RootOf}\left (\textit {\_Z}^{2}-21\right )}{2+3 x}\right )}{14}\) \(127\)

input
int((1-2*x)^(3/2)/(2+3*x)^3/(3+5*x)^3,x,method=_RETURNVERBOSE)
 
output
-1/2*(-1+2*x)*(91800*x^3+174435*x^2+110315*x+23219)/(15*x^2+19*x+6)^2/(1-2 
*x)^(1/2)+14073/7*arctanh(1/7*21^(1/2)*(1-2*x)^(1/2))*21^(1/2)-13665/11*ar 
ctanh(1/11*55^(1/2)*(1-2*x)^(1/2))*55^(1/2)
 
3.20.26.5 Fricas [A] (verification not implemented)

Time = 0.23 (sec) , antiderivative size = 162, normalized size of antiderivative = 1.10 \[ \int \frac {(1-2 x)^{3/2}}{(2+3 x)^3 (3+5 x)^3} \, dx=\frac {95655 \, \sqrt {11} \sqrt {5} {\left (225 \, x^{4} + 570 \, x^{3} + 541 \, x^{2} + 228 \, x + 36\right )} \log \left (\frac {\sqrt {11} \sqrt {5} \sqrt {-2 \, x + 1} + 5 \, x - 8}{5 \, x + 3}\right ) + 154803 \, \sqrt {7} \sqrt {3} {\left (225 \, x^{4} + 570 \, x^{3} + 541 \, x^{2} + 228 \, x + 36\right )} \log \left (-\frac {\sqrt {7} \sqrt {3} \sqrt {-2 \, x + 1} - 3 \, x + 5}{3 \, x + 2}\right ) + 77 \, {\left (91800 \, x^{3} + 174435 \, x^{2} + 110315 \, x + 23219\right )} \sqrt {-2 \, x + 1}}{154 \, {\left (225 \, x^{4} + 570 \, x^{3} + 541 \, x^{2} + 228 \, x + 36\right )}} \]

input
integrate((1-2*x)^(3/2)/(2+3*x)^3/(3+5*x)^3,x, algorithm="fricas")
 
output
1/154*(95655*sqrt(11)*sqrt(5)*(225*x^4 + 570*x^3 + 541*x^2 + 228*x + 36)*l 
og((sqrt(11)*sqrt(5)*sqrt(-2*x + 1) + 5*x - 8)/(5*x + 3)) + 154803*sqrt(7) 
*sqrt(3)*(225*x^4 + 570*x^3 + 541*x^2 + 228*x + 36)*log(-(sqrt(7)*sqrt(3)* 
sqrt(-2*x + 1) - 3*x + 5)/(3*x + 2)) + 77*(91800*x^3 + 174435*x^2 + 110315 
*x + 23219)*sqrt(-2*x + 1))/(225*x^4 + 570*x^3 + 541*x^2 + 228*x + 36)
 
3.20.26.6 Sympy [A] (verification not implemented)

Time = 80.27 (sec) , antiderivative size = 654, normalized size of antiderivative = 4.45 \[ \int \frac {(1-2 x)^{3/2}}{(2+3 x)^3 (3+5 x)^3} \, dx=- \frac {6934 \sqrt {21} \left (\log {\left (\sqrt {1 - 2 x} - \frac {\sqrt {21}}{3} \right )} - \log {\left (\sqrt {1 - 2 x} + \frac {\sqrt {21}}{3} \right )}\right )}{7} + \frac {6934 \sqrt {55} \left (\log {\left (\sqrt {1 - 2 x} - \frac {\sqrt {55}}{5} \right )} - \log {\left (\sqrt {1 - 2 x} + \frac {\sqrt {55}}{5} \right )}\right )}{11} + 8484 \left (\begin {cases} \frac {\sqrt {21} \left (- \frac {\log {\left (\frac {\sqrt {21} \sqrt {1 - 2 x}}{7} - 1 \right )}}{4} + \frac {\log {\left (\frac {\sqrt {21} \sqrt {1 - 2 x}}{7} + 1 \right )}}{4} - \frac {1}{4 \left (\frac {\sqrt {21} \sqrt {1 - 2 x}}{7} + 1\right )} - \frac {1}{4 \left (\frac {\sqrt {21} \sqrt {1 - 2 x}}{7} - 1\right )}\right )}{147} & \text {for}\: \sqrt {1 - 2 x} > - \frac {\sqrt {21}}{3} \wedge \sqrt {1 - 2 x} < \frac {\sqrt {21}}{3} \end {cases}\right ) - 1176 \left (\begin {cases} \frac {\sqrt {21} \cdot \left (\frac {3 \log {\left (\frac {\sqrt {21} \sqrt {1 - 2 x}}{7} - 1 \right )}}{16} - \frac {3 \log {\left (\frac {\sqrt {21} \sqrt {1 - 2 x}}{7} + 1 \right )}}{16} + \frac {3}{16 \left (\frac {\sqrt {21} \sqrt {1 - 2 x}}{7} + 1\right )} + \frac {1}{16 \left (\frac {\sqrt {21} \sqrt {1 - 2 x}}{7} + 1\right )^{2}} + \frac {3}{16 \left (\frac {\sqrt {21} \sqrt {1 - 2 x}}{7} - 1\right )} - \frac {1}{16 \left (\frac {\sqrt {21} \sqrt {1 - 2 x}}{7} - 1\right )^{2}}\right )}{1029} & \text {for}\: \sqrt {1 - 2 x} > - \frac {\sqrt {21}}{3} \wedge \sqrt {1 - 2 x} < \frac {\sqrt {21}}{3} \end {cases}\right ) + 22660 \left (\begin {cases} \frac {\sqrt {55} \left (- \frac {\log {\left (\frac {\sqrt {55} \sqrt {1 - 2 x}}{11} - 1 \right )}}{4} + \frac {\log {\left (\frac {\sqrt {55} \sqrt {1 - 2 x}}{11} + 1 \right )}}{4} - \frac {1}{4 \left (\frac {\sqrt {55} \sqrt {1 - 2 x}}{11} + 1\right )} - \frac {1}{4 \left (\frac {\sqrt {55} \sqrt {1 - 2 x}}{11} - 1\right )}\right )}{605} & \text {for}\: \sqrt {1 - 2 x} > - \frac {\sqrt {55}}{5} \wedge \sqrt {1 - 2 x} < \frac {\sqrt {55}}{5} \end {cases}\right ) + 4840 \left (\begin {cases} \frac {\sqrt {55} \cdot \left (\frac {3 \log {\left (\frac {\sqrt {55} \sqrt {1 - 2 x}}{11} - 1 \right )}}{16} - \frac {3 \log {\left (\frac {\sqrt {55} \sqrt {1 - 2 x}}{11} + 1 \right )}}{16} + \frac {3}{16 \left (\frac {\sqrt {55} \sqrt {1 - 2 x}}{11} + 1\right )} + \frac {1}{16 \left (\frac {\sqrt {55} \sqrt {1 - 2 x}}{11} + 1\right )^{2}} + \frac {3}{16 \left (\frac {\sqrt {55} \sqrt {1 - 2 x}}{11} - 1\right )} - \frac {1}{16 \left (\frac {\sqrt {55} \sqrt {1 - 2 x}}{11} - 1\right )^{2}}\right )}{6655} & \text {for}\: \sqrt {1 - 2 x} > - \frac {\sqrt {55}}{5} \wedge \sqrt {1 - 2 x} < \frac {\sqrt {55}}{5} \end {cases}\right ) \]

input
integrate((1-2*x)**(3/2)/(2+3*x)**3/(3+5*x)**3,x)
 
output
-6934*sqrt(21)*(log(sqrt(1 - 2*x) - sqrt(21)/3) - log(sqrt(1 - 2*x) + sqrt 
(21)/3))/7 + 6934*sqrt(55)*(log(sqrt(1 - 2*x) - sqrt(55)/5) - log(sqrt(1 - 
 2*x) + sqrt(55)/5))/11 + 8484*Piecewise((sqrt(21)*(-log(sqrt(21)*sqrt(1 - 
 2*x)/7 - 1)/4 + log(sqrt(21)*sqrt(1 - 2*x)/7 + 1)/4 - 1/(4*(sqrt(21)*sqrt 
(1 - 2*x)/7 + 1)) - 1/(4*(sqrt(21)*sqrt(1 - 2*x)/7 - 1)))/147, (sqrt(1 - 2 
*x) > -sqrt(21)/3) & (sqrt(1 - 2*x) < sqrt(21)/3))) - 1176*Piecewise((sqrt 
(21)*(3*log(sqrt(21)*sqrt(1 - 2*x)/7 - 1)/16 - 3*log(sqrt(21)*sqrt(1 - 2*x 
)/7 + 1)/16 + 3/(16*(sqrt(21)*sqrt(1 - 2*x)/7 + 1)) + 1/(16*(sqrt(21)*sqrt 
(1 - 2*x)/7 + 1)**2) + 3/(16*(sqrt(21)*sqrt(1 - 2*x)/7 - 1)) - 1/(16*(sqrt 
(21)*sqrt(1 - 2*x)/7 - 1)**2))/1029, (sqrt(1 - 2*x) > -sqrt(21)/3) & (sqrt 
(1 - 2*x) < sqrt(21)/3))) + 22660*Piecewise((sqrt(55)*(-log(sqrt(55)*sqrt( 
1 - 2*x)/11 - 1)/4 + log(sqrt(55)*sqrt(1 - 2*x)/11 + 1)/4 - 1/(4*(sqrt(55) 
*sqrt(1 - 2*x)/11 + 1)) - 1/(4*(sqrt(55)*sqrt(1 - 2*x)/11 - 1)))/605, (sqr 
t(1 - 2*x) > -sqrt(55)/5) & (sqrt(1 - 2*x) < sqrt(55)/5))) + 4840*Piecewis 
e((sqrt(55)*(3*log(sqrt(55)*sqrt(1 - 2*x)/11 - 1)/16 - 3*log(sqrt(55)*sqrt 
(1 - 2*x)/11 + 1)/16 + 3/(16*(sqrt(55)*sqrt(1 - 2*x)/11 + 1)) + 1/(16*(sqr 
t(55)*sqrt(1 - 2*x)/11 + 1)**2) + 3/(16*(sqrt(55)*sqrt(1 - 2*x)/11 - 1)) - 
 1/(16*(sqrt(55)*sqrt(1 - 2*x)/11 - 1)**2))/6655, (sqrt(1 - 2*x) > -sqrt(5 
5)/5) & (sqrt(1 - 2*x) < sqrt(55)/5)))
 
3.20.26.7 Maxima [A] (verification not implemented)

Time = 0.29 (sec) , antiderivative size = 146, normalized size of antiderivative = 0.99 \[ \int \frac {(1-2 x)^{3/2}}{(2+3 x)^3 (3+5 x)^3} \, dx=\frac {13665}{22} \, \sqrt {55} \log \left (-\frac {\sqrt {55} - 5 \, \sqrt {-2 \, x + 1}}{\sqrt {55} + 5 \, \sqrt {-2 \, x + 1}}\right ) - \frac {14073}{14} \, \sqrt {21} \log \left (-\frac {\sqrt {21} - 3 \, \sqrt {-2 \, x + 1}}{\sqrt {21} + 3 \, \sqrt {-2 \, x + 1}}\right ) - \frac {2 \, {\left (45900 \, {\left (-2 \, x + 1\right )}^{\frac {7}{2}} - 312135 \, {\left (-2 \, x + 1\right )}^{\frac {5}{2}} + 707200 \, {\left (-2 \, x + 1\right )}^{\frac {3}{2}} - 533841 \, \sqrt {-2 \, x + 1}\right )}}{225 \, {\left (2 \, x - 1\right )}^{4} + 2040 \, {\left (2 \, x - 1\right )}^{3} + 6934 \, {\left (2 \, x - 1\right )}^{2} + 20944 \, x - 4543} \]

input
integrate((1-2*x)^(3/2)/(2+3*x)^3/(3+5*x)^3,x, algorithm="maxima")
 
output
13665/22*sqrt(55)*log(-(sqrt(55) - 5*sqrt(-2*x + 1))/(sqrt(55) + 5*sqrt(-2 
*x + 1))) - 14073/14*sqrt(21)*log(-(sqrt(21) - 3*sqrt(-2*x + 1))/(sqrt(21) 
 + 3*sqrt(-2*x + 1))) - 2*(45900*(-2*x + 1)^(7/2) - 312135*(-2*x + 1)^(5/2 
) + 707200*(-2*x + 1)^(3/2) - 533841*sqrt(-2*x + 1))/(225*(2*x - 1)^4 + 20 
40*(2*x - 1)^3 + 6934*(2*x - 1)^2 + 20944*x - 4543)
 
3.20.26.8 Giac [A] (verification not implemented)

Time = 0.31 (sec) , antiderivative size = 148, normalized size of antiderivative = 1.01 \[ \int \frac {(1-2 x)^{3/2}}{(2+3 x)^3 (3+5 x)^3} \, dx=\frac {13665}{22} \, \sqrt {55} \log \left (\frac {{\left | -2 \, \sqrt {55} + 10 \, \sqrt {-2 \, x + 1} \right |}}{2 \, {\left (\sqrt {55} + 5 \, \sqrt {-2 \, x + 1}\right )}}\right ) - \frac {14073}{14} \, \sqrt {21} \log \left (\frac {{\left | -2 \, \sqrt {21} + 6 \, \sqrt {-2 \, x + 1} \right |}}{2 \, {\left (\sqrt {21} + 3 \, \sqrt {-2 \, x + 1}\right )}}\right ) + \frac {2 \, {\left (45900 \, {\left (2 \, x - 1\right )}^{3} \sqrt {-2 \, x + 1} + 312135 \, {\left (2 \, x - 1\right )}^{2} \sqrt {-2 \, x + 1} - 707200 \, {\left (-2 \, x + 1\right )}^{\frac {3}{2}} + 533841 \, \sqrt {-2 \, x + 1}\right )}}{{\left (15 \, {\left (2 \, x - 1\right )}^{2} + 136 \, x + 9\right )}^{2}} \]

input
integrate((1-2*x)^(3/2)/(2+3*x)^3/(3+5*x)^3,x, algorithm="giac")
 
output
13665/22*sqrt(55)*log(1/2*abs(-2*sqrt(55) + 10*sqrt(-2*x + 1))/(sqrt(55) + 
 5*sqrt(-2*x + 1))) - 14073/14*sqrt(21)*log(1/2*abs(-2*sqrt(21) + 6*sqrt(- 
2*x + 1))/(sqrt(21) + 3*sqrt(-2*x + 1))) + 2*(45900*(2*x - 1)^3*sqrt(-2*x 
+ 1) + 312135*(2*x - 1)^2*sqrt(-2*x + 1) - 707200*(-2*x + 1)^(3/2) + 53384 
1*sqrt(-2*x + 1))/(15*(2*x - 1)^2 + 136*x + 9)^2
 
3.20.26.9 Mupad [B] (verification not implemented)

Time = 1.43 (sec) , antiderivative size = 107, normalized size of antiderivative = 0.73 \[ \int \frac {(1-2 x)^{3/2}}{(2+3 x)^3 (3+5 x)^3} \, dx=\frac {14073\,\sqrt {21}\,\mathrm {atanh}\left (\frac {\sqrt {21}\,\sqrt {1-2\,x}}{7}\right )}{7}-\frac {13665\,\sqrt {55}\,\mathrm {atanh}\left (\frac {\sqrt {55}\,\sqrt {1-2\,x}}{11}\right )}{11}+\frac {\frac {355894\,\sqrt {1-2\,x}}{75}-\frac {56576\,{\left (1-2\,x\right )}^{3/2}}{9}+\frac {41618\,{\left (1-2\,x\right )}^{5/2}}{15}-408\,{\left (1-2\,x\right )}^{7/2}}{\frac {20944\,x}{225}+\frac {6934\,{\left (2\,x-1\right )}^2}{225}+\frac {136\,{\left (2\,x-1\right )}^3}{15}+{\left (2\,x-1\right )}^4-\frac {4543}{225}} \]

input
int((1 - 2*x)^(3/2)/((3*x + 2)^3*(5*x + 3)^3),x)
 
output
(14073*21^(1/2)*atanh((21^(1/2)*(1 - 2*x)^(1/2))/7))/7 - (13665*55^(1/2)*a 
tanh((55^(1/2)*(1 - 2*x)^(1/2))/11))/11 + ((355894*(1 - 2*x)^(1/2))/75 - ( 
56576*(1 - 2*x)^(3/2))/9 + (41618*(1 - 2*x)^(5/2))/15 - 408*(1 - 2*x)^(7/2 
))/((20944*x)/225 + (6934*(2*x - 1)^2)/225 + (136*(2*x - 1)^3)/15 + (2*x - 
 1)^4 - 4543/225)